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Abstract. We investigate classically the problem of the centre-of-mass separation for a 
two-body system with net charge in a homogeneous magnetic field. With a view to general 
atomic physics applications, particular attention is paid to the case where one particle is 
much heavier than the other. Using a series of canonical transformations we introduce 
constants of the motion as the new momenta and determine the conjugate coordinates. 
Alternative momenta involving a suggested near-constant of the motion are investigated 
for use with a translation-invariant internal potential. These lead to a ’near separation’ in 
terms of two coupled particles characterised by vectors which possess a simple classical 
interpretation, even in the presence of an interaction potential. However we find that the 
coupling is not small and is not reduced when one of the particles is much heavier than 
the other, although the frequencies of the two motions then differ widely. 

1. Introduction 

The problem of the motion of systems of charged particles in a homogeneous magnetic 
field has long been of interest, particularly with regard to its quantum mechanical 
implications (see Johnson er a1 (1983) for a general comprehensive review and Baye 
(1982, 1983) and the references therein for a detailed study of the two-body case). 

Here we investigate the centre-of-mass (CM)  separation for a two-body system with 
non-zero net charge and arbitrary masses. In particular we concentrate on the case 
typical in atomic physics where one of the particles is very much heavier than the 
other. We follow the quantal analysis of Baye (1983), in which he proposes for a 
strong magnetic field a separation in terms of two weakly coupled pseudoparticles. 
This is achieved through the introduction of a suggested near-constant, C closely 
related to the total kinetic momentum of the system, and characteristic of one of the 
pseudoparticles. 

It is hoped that a classical approach may provide a view of the problem complemen- 
tary to the formal quantal picture in terms of creation and annihilation operators (Baye 
1983), thus giving additional insight into the behaviour of C. Further, while a quantal 
solution is required for the low-lying atomic states, a classical approach may be useful 
for Rydberg states where the strong-field regime can be achieved with laboratory fields. 

We seek to describe the problem making maximum use of constants of the motion 
as canonical momenta since this makes Hamilton’s equations relatively simple and 
facilitates comparison with the quantum results. 

0305-4470/86/101811+ 12$02.50 @ 1986 The Institute of Physics 1811 
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Although generally the vector potential A couples relative and CM variables in the 
Hamiltonian, the CM motion is still separable for the neutral two-body system, such 
as atomic hydrogen (see Johnson et al 1983). Strictly this is termed a ‘pseudoseparation’ 
since the resulting one-body problem takes, as a parameter, the magnitude of the 
constant total pseudomomentum (Johnson et a1 1983). However for a system with 
non-zero total charge Q such a separation can be made only for motion parallel to 
the magnetic field. 

Transverse to the field the usual notion of C M  separation is seen to require some 
modification, the constant pseudomomentum above now supplying one less canonical 
momentum than in the neutral system. Baye (1983) suggests that this reduction from 
a separable problem can be countered by utilising C, which for non-zero values of Q 
is completely independent of the constant pseudomomentum. It is expected that C 
will furnish an additional near-constant transverse canonical momentum to permit an 
analogue of CM separation for the Q#O problem, whereby the internal motion is 
affected by weak coupling to the CM motion. Then we have replaced the two-body 
two-dimensional problem by two weakly coupled one-body problems. 

Section 2.1 summarises the Hamiltonian description of the motion of a single 
charged particle in a homogeneous magnetic field and introduces the relevant constants 
of the motion for future reference. In 0 2.2 we extend this treatment to the two-body, 
Q # 0 system with a view to accommodating the effect of a typical interaction potential. 
Canonical sets for use with such a potential are derived in § 3, notably one yielding 
an approximate cM-like separation for the transverse motion. We also consider the 
inclusion of the potential, which takes a relatively compact form in the latter representa- 
tion. Section 4 outlines an alternative approach to the general Q # 0 problem, useful 
for relatively weak magnetic fields. Concluding remarks are presented in 0 5. 

2. Motion of charged particles in a homogeneous magnetic field 

2.1. One-body problem 

Consider a particle of mass m, charge e, position vector r and conjugate momentum 
p .  Then the non-relativistic Hamiltonian in the presence of a vector potential A ( r )  is 

H = ( p  - e A ) 2 / 2 m  = r 2 / 2 m  

with m = p - eA the kinetic momentum. With the static symmetric gauge A = 4B x r, 
used throughout this paper, the transverse kinetic momentum mL now reads 

mL = p L  - ( e / 2 ) B  x rl 

where rL is the component of r perpendicular to the field B. The motion parallel and 
perpendicular to the field uncouples 

H = HI,  -+ HL = p5/2m + r : / 2 m  

with B = B i ,  where the parallel motion corresponds to that of a free particle. For the 
transverse motion, Hamilton’s equations have the general solution 

p I = - ( e / 2 ) B x r L + k ,  (3) 
where k ,  is a constant (momentum-like) vector in the xy plane. The constant can 
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equally be written in the convenient forms 

k ,  = eB x rc = ar,+ eB x rl (4) 

such that r, is a constant (displacement-like) vector, also in the xy plane. Using 
equations ( 1 )  and (3) we then obtain 

i, = nJ m = ( e /  m )[ ( r ,  - rc) x B ]  ( 5 )  

and so the transverse motion is identified as precession of angular frequency e B / m  
about a fixed centre rc termed the 'guiding centre' (Landau and Lifshitz 1975, 0 21) 
of the classical Landau orbit of radius lrl - r,l. Combining this with the uniform motion 
in the z direction produces a helical trajectory about an axis parallel to B passing 
through r,. 

From equation (3) we define k = p +  ( e / 2 ) B  x r to be the (constant) pseudomomen- 
tum of the charged particle in a constant B field. (Note that parallel to the field k, = p, . )  
The other constants of the motion are T: and I,, the z component of angular momentum. 
However not all these constants are independent since from equations ( 1 )  and (3) we 
obtain 

2eB1, = k: - T:. ( 6 )  
Further, on inspecting the Poisson bracket ( P B )  algebra of k,. and k,, the constant 

k ,  provides only one canonical momentum, which we shall take to be k: = k f ; +  k:. 
The possible canonical momenta are then ( l z ,  k:, T:, p z )  and, by virtue of equation 
(6) above, one of ( l z ,  k:, T:)  must be discarded to form a canonical set. (This freedom 
to choose alternative canonical momenta will be exploited again below in the two-body 
case.) 

Choosing the constants (k : ,  T:, p z )  as momenta we have the following canonical 
set (q,  p )  where 

g l  = tan-'( k,/ k,.) 

92 = tan-'(.n,/ 7 ~ , )  

p 1  = k: /2eB 
p2 = - ~ : / 2 e B  (7) 

93 = z P3 = P z .  

While one can employ k, and rl and conjugate distances, the use here of angle- 
action coordinates (Goldstein 1980) for the transverse variables facilitates comparison 
with the quantal approach of Baye (1983). 

Alternatively we may choose the constants (k : ,  I,, p z )  and, using a simple point 
transformation suggested by equation ( 6 ) ,  obtain the corresponding canonical set 
(4'3 P') 

g i  = tan-' (h/ h) -tan-'( T,/ T ~ )  p i  = k: /2eB 
g ;  = tan-'( T,/ T,.) P i =  12 (8) 
g j = z  P i  = P z .  

The Hamiltonian may now be written in these two representations as 

H = p : / 2 m  - ( e B / m ) p 2  = p i 2 / 2 m  + ( e B / m ) ( p l  -pS) .  
We see that H is independent of p ,  and that the vector ar, precesses with uniform 

angular frequency of magnitude eB/  m. We note from the primed representation, 
equation (8), that q;  acts as a reference angle to which the relative angle qi is referred. 
It is this representation, in particular, which goes over most readily to the final two-body 
description of 0 3. 
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2.2, Two-body problem with non-zero net charge 

Consider two particles with charges, masses and position vectors e,, m,, r, and e , ,  m , ,  
rl respectively and non-zero total charge Q = eo+ e , .  The Hamiltonian may be decom- 
posed as in 5 2.1 into 

H = HI\+ H , +  V(ro,  r l )  

Hi1 = p k / 2 m o +  P : J ~ ~ I  H L  = 7rg,/2mo+ &/2m1 (10)  

( 9 )  

with interaction-free components: 

and an interaction potential V. 
For strong magnetic fields the separate treatment of the parallel and transverse 

motions becomes advantageous. By strong fields here we imply for electrons fields 
B >> Bo where Bo = ru2m2c2/eh = 2.35 x 10ST is the conventional atomic unit of field 
strength. 

We concentrate then on the transverse motion since the parallel motion is no 
different from the well understood field-free case. Neglecting, initially, the interaction 
V the canonical set given in equations ( 7 )  may be adopted for each particle indepen- 
dently: 

q1 = tan-'(ko,/kox) PI = kL/2eoB 

q4=tan- ' (~, , / . r r l , )  p 4  = -&/2el B 

with constants analogous to the one-body problem ( 5  2.1) for each particle (i.e. all 
quantities except q3 and q4 are constant). 

More realistically, in the presence of a potential V(ro,  r l ) ,  none of the individual 
momenta are constant since the relative transverse coordinates roL, r , ,  depend on all 
the q and p :  

(12 )  

using equation (4), and similarly for r l L .  
However for particular potentials some constants are retained. Specifically for a 

translation-invariant potential V = V (  r ) ,  r = rl - r,, the total (transverse) pseudo- 
momentum KL is conserved (see Johnson et a1 1983), where 

roi = (koi  - mol) X B /  eoB2 

K ,  = ko, + kl L. ( 1 3 )  

If we now define Rc by K ,  = QB x R,, as in equation (4), one may view this as the 
charge centroid of the guiding centres 

R,=(eoroc+ eiric)/Q (14 )  

which remains fixed, in contrast to the now-drifting individual guiding centres (roc, r l c ) .  
As in 5 2.1, because [K,,  K , ]  # 0, the constant transverse pseudomomentum K ,  

contributes only one useful canonical momentum, unlike the special case of zero net 
charge where it yields two (Avron et a1 1978, Herold et a1 1981). 

Further, if V is invariant under rotations about the field direction, then the z 
component of the total angular momentum L, is also conserved, and by equations (6) 
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and (1 1) 
4 

L, = I,, + I , ,  = pi. (15) 
i = l  

It is straightforward to verify that the PB of the set (K: ,  L,, & and T:,) all vanish. 
In the next section we derive a full set of generalised coordinates including these 
momenta and discuss the problems in separating the transverse CM motion. 

3. Use of constants of the motion as canonical momenta 

3.1. Use of the constants K:, L, 

The theory of canonical transformations (e.g. Goldstein 1980) provides a method 
whereby the canonical set including certain specified momenta may be obtained from 
an existing set. The constants K:, L, can be written in terms of the single-particle set 
of 0 2.1 and so may be systematically introduced by canonical transformations. 
However since the PB of K: and either k& or k:, is non-vanishing we require to 
introduce L, first. 

Using (14) we can perform a simple point momentum transformation replacing 
(arbitrarily) p1 by p i  = L, to yield the set 

4: = 41 41 = qi-41 PI=Pi i = 2,3,4. (16) 

K: = k:l + k:, + 2hLk1, cos 4; (17) 

The constant K: now satisfies 

with kil implicitly defined through equation (15). A further transformation ( q ' ,  p ' )  + 
(Q, P) replaces p ; ( =  k:,/2e1B) by P2(= K:/ZQB) using an F4(p', P)-type generating 
function (Goldstein 1980) given by 

F4=- q;dp; I 
with q; = q ; ( p i ,  P2; P1, 5, P4) implicitly defined through equations (15) and (17). 

form the composite generating function (see Goldstein 1980, p 385): 
To preserve the other momenta we adjoint the relevant identity generator F2 and 

F = F4 + F2 = - 4; dp; + ( 4  PI + qSP3 + qiP4). (18) 

After some analysis, the details of which are outlined in the appendix, the following 
I 

canonical set (Q, P) is found 

Q1 = tan-'( k,/ k , )  PI = L, 

Pz = K:/2QB 

P3 = -.ir&/2e0B 

P4 = -7~:,/2e, B. 

Q2 =tan-'( K,/ K,) -tan-'( k,/ k,) 

Q3 =tan-'( ray/ rex) -tan-'( k,/ k,) 

Q4 = tan-'(.rrl,/ rIx) -tan-'( k,/ k,) 

(19) 

Here we have defined the charge-weighted relative pseudomomentum, 

kL=(eoklL-elko,)/Q (20) 
interpreted through equation (4) as relating to the separation of the guiding centres 
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of the particles (see figure 1): 

~ , = ( e o e l l Q ) B x ( r l c - ~ o , ) .  (21)  

In contrast to K ,  , the relative pseudomomentum k ,  is constant only in the absence 

From the definitions of K ,  and k , ,  equations (13) and (20)  respectively, we obtain 
of an interaction potential. 

analogously to equation ( 6 )  

L, = K:/2QB + k:/2eB - .rri,/2eoB - .rr:,/2elB l / e  = l / e o +  l l e ,  (22)  
relating the magnitude of k: to the canonical momenta of equations (19).  

Since we chose to preserve (T;,, T : ~ )  as canonical momenta the Hamiltonian is 
simply H ,  = H,(P,, P4) in the set (Q ,  P )  given in equations (19).  Then Q1 and Q2 

are constants while 

Q3(t)=-wot+Q! Q4( t ,  = - @ I t  + Q: wi = eiB/ mi i = O ,  1 (23)  

where Q! and Q: are constants. This set is equivalent to what Baye terms his 
'intermediate' basis. 

Under the influence of an internal potential V (  r ) ,  however, the number of constants 
is greatly reduced, the relative coordinate r, = r l ,  - roL appearing as 

r, = (kL/ e - lrl ,I el + no,/ eo) x B/  B2 (24)  

and so V depends on (Q,, Q4; P1, P2, 5, P4). 
Thus, for the Hamiltonian 2 = H, + V ,  only the momenta PI = L, and P2 = K :/2QB 

are constant, and these are insufficient to permit a separation of relative motion and 
CM motion. 

3.2. Properties of Baye's momentum C, 

Baye (1982,1983) has suggested that the vector 

C, = ~ ~ + ~ , / ~ o ~ ~ o , - ~ ~ l / ~ o ~ ~ ~ L ~ ~ l ,  

= KL- QB x r,, = Q B x  ( R c -  ro,) 

will be a near-constant of the motion when ma >> m1 and e,> -el > 0. Clearly for the 
neutral problem, C, reduces to K,. ( R ,  is given in equation (14).) 

c---. '. Orbi t  o f  
/ 

I 
/ \ 

\ 
. * _ - - - _  

\ \  heavy pa r t i c l e  

I / I 
/"Orbit o f  '' 

I ,' ligh t  par t i c le  \ \ \  
\ 
\ 

\ 
\ 

\ \ 
\ 

I 
I 

I 
I 

I 

\ 
\ 

'-- A--/' 
/ 

Figure 1. The broken circles represent the orbits of the particles in the absence of an 
interaction. The position vectors related to the momenta k,, k,, vol and mIL (see text) 
are also shown. 
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From equations (20) and (25a) we have C, = ( Q/eo)(k,+ mol) or, explicitly, in 
terms of the set (Q, P )  

C : =  ( Q 2 / e ~ ) ( k : + r ~ , + 2 k , r , ,  cos Q3) (26 )  

i.e. C, is the sum of a constant vector and a uniformly precessing vector. We see from 
equation (23) that C, will be approximately constant only when k, >> ro, (see figure 
2). The fact that mo>> m,  does not in fact affect whether C, is constant or not but 
does ensure that C, will change slowly compared to ml , ,  since Q3 will then change 
slowly, see equation (23). 

0 

\ 
\ / 

/ 

Figure 2. The variation of the momenta C, and k; is shown for the case eo> -e, > 0, 
assuming (k,\> (mol(. Here 0 is a fixed point and the brpken circles represent the loci of 
the (varying) ends of the vectors (e,/ Q) C,  and (ea/ Q ) k , .  

In terms of guiding centres, C, will be a near-constant if the separation of the 
guiding centres (varying as k, from equation (21)) is very much larger than the radius 
of the heavy particle orbit (varying as rol from equation (5 ) ) .  Figure 1 illustrates the 
situation, but is to be strictly understood only in the limit of the interaction potential 
becoming negligible. 

It is easily seen that [ r,, C,] = 0, and so C,  is not affected directly by the presence 
of an interaction potential V( r l ) .  Writing II, = ma, + mil, then C, = 
ll, + e , B  x (rli  - rol). In this way C, corresponds closely to the CM kinetic momentum 
II,. Also since [ C,, C y ]  # 0 ,  C, (like K, )  provides only one useful canonical momen- 
tum, which we take to be C:. 

The less restrictive condition for C :  to be a near-constant is that k, >> ro,, or vice 
versa. Neither criterion is directly influenced by the mass ratio but they do depend 
on the charge ratio leli/eo (see equations ( 5 )  and (21)). 

For C :  to be a near-constant in the quantal picture requires that its off-diagonal 
matrix elements be small compared to its diagonal spacing with respect to basis states 
in which H ,  itself is diagonal, e.g. the ‘intermediate’ set of Baye (1983). 

For a time-independent Hamiltonian such as that under discussion we have the 
standard result for the off-diagonal elements of some operator 6, 

<flbIi) = <fl~R 61I i ) / (~ f -  Ei) 

where li), I f )  are the (assumed non-de8enerate) wavefunctions with respective energy 
eigenvalues Ei, Ef of a Hamiltonian H. 

In the intermediate basis of Baye (1983), analogous to our set (Q, P ) ,  it is seen 
that the only non-vanishing off-diagonal elements arise from adjacent states labelled 
by the quantum numbers no, s. (We follow the quantal notation of Baye (1983) except 
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that wo denotes the cyclotron frequency, see equation (23 ) ,  and not the Larmor 
frequency as in Baye.) Then the appropriate energy difference is A E (  = E f -  Ei) = hw,. 

Further, the corresponding off-diagonal elements of the commutator [ H,, C : ]  are 

( n o + l ,  s - l I [ H , ,  C~]~nos)=2hwo~(1-~Z)’~2hQB[s(no+1)]”z 

and E = (/ell/eo)”2. Thus the off-diagonal elements of C: are 

(no+ 1 ,  s - lIC:lnos) = 2 ~ (  1 - E ~ ) ” * ~ Q B [  s( no+ l ) ] ” z  

independent of m,/  mo. 

not guarantee that the off-diagonal elements of C: are themselves small. 
Hence the existence of a small commutator [ H , ,  C : ] ,  because ma is large, does 

Finally the diagonal spacing of C: may be defined as 

AC:(no,s) = ( nosIC:Inos) -(nhs’lC:lnhs’) 

where nh = no+ 1 ,  s‘ = s - 1 .  Then the ratio describing the variation of C: is typically 

Thus the ratio is not directly affected by the mass condition ma>> m, and is in 
general never small. However in the special case of highly charged hydrogen-like 
systems with eo>> lell (such that we have a weak magnetic field relative to the Coulomb 
interaction) this ratio can be small. Note that E = 1 corresponds to the well understood 
Q = 0 problem. 

3.3. Canonical momenta including C: 

Because of the vanishing PB of C,  and r ,  and the slow variation of C,  compared to 
T , ~  it is useful to introduce C: as a momentum. The derivation of the corresponding 
canonical set follows that in P 3 . 1 .  Replacing P3 = -.rri,/2eoB by Pi  = - C : / 2 Q B  yields 
(see appendix) 

Q: = tan-’(rT,/rT,) Pi = L, 
Qh = tan-’(Ky/Kx) - tan- ’ ( iy /k)  

Q; = tan-’(C,/C,)-tan-’(~y/l;,) Pi= - C : / 2 Q B  

P ; =  K : / 2 Q B  

Q ; =  t a n ~ ’ ( . r r l y / . r r , x ) - t a n ~ ’ ( ~ y / ~ x )  P i =  -.rr:,/2e,B 

with the momentum k; defined as 

i, = ( Q / e o ) k i  + ( e l l  eo) mol = ki, - ( e , /  eo)(koi - no,) = C,  - mol (28 )  

=elBx(rl,-ro,)  (29 )  
interpreted (see figure 1 )  as relating to the position vector of the heavy particle referred 
to the guiding centre of the light particle. 

From the definitions of C, and c, we have, in place of equation (22 ) ,  

L, = K : / 2 Q B -  C : / 2 Q B + ~ : / 2 e l B - . r r : , / 2 e , B .  (30 )  
The transverse Hamiltonian is H ,  = H,+ H ’  where 

with CL defined in terms of the other momenta through equation (30)  and where the 
QS dependence indicates that C:  is not constant. 

H ,  = .rr:,/2m, + C: /2mo H’=( l /2mo) (L: -2CLCi  COS QS) ( 3 1 )  
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Replacing L, by i : / 2 e l  B using equation (30 )  yields the alternative description 

Q: = tan- '( i , , /L) 
QI =tan-'( K y /  K,) 

0," =tan-'( Cy/  C,) 

P; = i : / 2 e l  B 

P3 = K : / 2 Q B  
P," = - C : / 2 Q B  

(32)  

Q: = tan-'( TI,,/ rlx)  P: = -&/2el B 
which is to be compared with the independent-particle set of equation ( 1 1 ) .  This set 
is equivalent to the final set introduced by Baye (1983).  

The equations (30) - (32)  now offer an interpretation (Baye 1983) in terms of two 
pseudoparticles with the following properties: 

(i)  (ii) 
mass MI m, 
charge e1 Q (33)  
pseudomomentum k K ,  
kinetic momentum rill c,. 

Noting that in the set (Q", P") the angle dependence of the Hamiltonian arises 

(34) 
then all the momenta are constants in the 'unperturbed' Hamiltonian H,. The effect 
of the 'perturbation' H' is both to cause C :  and 6: to vary and to couple the 
pseudoparticles, see equation (32 ) .  

For the coupling of the whole system to be small it is necessary that H' be much 
smaller than e'ach of the remaining terms in the Hamiltonian. While H' varies as m i '  
so does C : / 2 m 0  and hence the condition is not directly influenced by the mass ratio. 
However H' can be much smaller when le,[<< e,, see equations (256)  and (29 ) .  

We note that the heavy pseudoparticle is characterised by an exact constant of the 
motion K :  and a 'slowly varying' quantity C: and in this sense we have a CM-like 
separation of the heavy motion from the relatively fast motion of the light particle. 
We see below that this separation is not significantly altered by the presence of an 
interaction potential V( r ) .  

Finally we may also relate the time variation of the light particle pseudomomentum 
i, to that of mol, as for C,. Using the definition, equation (28 ) ,  and referring to figure 
2 the motion of the light pseudoparticle has a similar interpretation in terms of a 
constant and a slowly varying vector, k ,  and nl,, respectively. However k ,  and nl, 
are directly affected when a potential V(r) is introduced as we see below. 

through the second term of 

H'= ( l / 2 m o ) [ i :  - 2 i , C ,  cos( 0," - Q:) ]  

I - 

3.4. The efect of the interaction potential 

We consider the effect of a spherically symmetric translation-invariant potential V( r). 
Strictly we need only a cylindrically symmetric potential but this is unlikely to be 
encountered in practice. From equations (24 )  and (28 )  we have 

(35)  
so that V depends on r, where 

ri = ( 1 / e 1 B 2 ) U k  - m1,) x BI 

e:B2r:= & + i ; - 2 ~ ~ , i ,  cos (Q: -Q: ) .  (36 )  
We see that the potential takes a very much simpler form in the set (Q", P") of 

equations (32 ) ,  compared to the previous two-body sets (see equations (12 )  and ( 2 4 ) ) ,  
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and is completely determined by the canonical quantities appropriate to the light 
pseudoparticle only. Thus the cM-like separation of the heavy pseudoparticle is not 
directly affected. 

4. Alternative approach to the Q # 0 problem 

For completeness we note the complementary treatment (Power and Zienau 1959, 
Woolley 1971) of the coupling in the Q # 0 problem appropriate for weaker magnetic 
fields, B << Bo, and for arbitrary masses. The Power-Zienau-Woolley (PZW) transforma- 
tion (see Johnson et al 1983) seeks to minimise the coupling between the CM and 
internal variables. The classical analogue of the PZW transformation is a point transfor- 
mation (ro,  r , ;  po, pl)  + ( R ,  r ;  P,, pM) which uses the gauge freedom to specify new CM 

and internal momenta PM and pM respectively, while retaining the standard CM and 
relative coordinates, R [ =( moro+ m,r , ) /  MI and r ( =  rl - ro) respectively. 

The required F2 generating function is 

Fz(ro, r ;  PM, P M )  = PM * R(ro, ri) + P M  . 4 r 0 ,  rl)  +g(ro ,  ri) 

g = ( elmo - eom,)r  * B x R / 2 M .  

(37) 

(38) 

(39) 

(40a) 

(40b) 

where to obtain the PZW transformation we employ 

The Hamiltonian is then 

H = I l h / 2 M  + &/2m + V M = mo + m,  m = mom,/ M 

where the kinetic momenta are 

n, = P ,  -&B x R - ( e l m o -  eom,)B x r / M  

TTM = p M  - ( e ,m:+  eom:)B x r / 2 M 2 .  

Here the only coupling between the CM and internal coordinates arises in the CM 

kinetic energy term, see equation (40a). 
Referring the dipole moment of the two particles to the CM we note that this residual 

coupling may be regarded as a dipole contribution 

p = eo(ro- R ) +  e l ( r l  - R )  = ( e l m o -  e o m , ) r / M .  (41 1 
In contrast, the standard separation applied in field-free problems (corresponding 

to g = 0 in equation (37)) has additional coupling in the internal kinetic energy term. 

5. Conclusions 

For two particles (with arbitrary charges and masses) in the presence of a homogeneous 
magnetic field the standard (field-free) separation of the problem is not possible. The 
remedy offered by Baye (1983) for strong fields, through the introduction of the 
suggested near-constant C,, yields a separation in which there remains some coupling 
between the pseudoparticles, independent of the mass ratio. However for two particles 
of different masses the introduction of C, is the natural starting point for the separation 
of slow and fast motions. In the representation (Q”, P”) the momentum 
PI ( = - C : / 2 Q B )  and the angle Q1 (= tan-’(C,/C,)) may be regarded as constant 
even in the presence of an interaction potential V ( r )  (see § 3.4) since such a potential 
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affects only the light pseudoparticle. The equations may then be solved for the fast 
motion of the light pseudoparticle and subsequently for the relatively slow motion of 
the heavy pseudoparticle. 

While we have concentrated mainly on the properties of the momentum Ci associ- 
ated with the heavy pseudoparticle physically one is interested primarily in the light 
particle energies. In this respect the coupling term H’ does indeed constitute a small 
perturbation of the remaining terms in the Hamiltonian H such that, to zeroth order, 
the light particle energies may be derived from the approximate Hamiltonian H - H’. 
One can then invoke a perturbation treatment, whose expansion parameter is 
m, B /  mol?,, to provide higher-order corrections valid even for fields B > Bo. (Here Bo 
is determined by the charge and mass of the light particle, i.e. typically, but not 
necessarily, the electron parameters in the definition of Bo, see 0 2.2.) In contrast H’ 
is not a small perturbation of the heavy particle motion, except when eo >> lel / .  

Thus we see it is the slow variation of CL which renders a convenient classical 
description of the transverse motion of two charged particles in a strong magnetic field. 
The description is particularly appropriate in the context of highly charged hydrogen- 
like ions ( e ,  >> lell). 

In contrast the PZW approach is useful for relatively weak magnetic fields for which 
a separation of the motion parallel and transverse to the field is not helpful. The effect 
of the CM coupling on the internal motion may be treated by a perturbation expansion 
in B I B ,  (Johnson et al 1983). 

Further progress awaits numerical investigations. 
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Appendix 

The derivation of the canonical set (Q, P )  from the set (q ‘ ,  p ’ )  proceeds from the 
generator F4(p’, P )  

) dkf:. 
K - kiL - kT: 

F4 = -( 1/2e,B) 1 cos-’ ( 
2kOikTL 

For completeness and for its possible use in semiclassical mechanics (Miller 1974) 
we obtain F4 explicitly by integration by parts, yielding 

F4 = ( p2 Q 2  - P; q ; )  - [ PI - ( p3 + p4) 1 ( 4 - 91 ) (A2) 
where the Q ( p ’ ,  P )  are given by equations (19), qS(p‘, P )  by equation (17) and q i ( p ’ ,  P) 
by equations (15) and (20). 

Alternatively, to provide a check we may derive the conjugate angles directly, by 
differentiating under the integral sign in equation (Al).  With attention to the integration 
limits, this produces elementary integrals of the form 

1: dx’/ R112y’ (A3) 

where R is a quadratic in x’ (= k:l), and y’ is linear in x’. 
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The lower limit, taken as zero in each case, yields an unimportant constant and 
the angles given in equations (19) are obtained by combining the various (inverse) 
circular functions, arising from F4 and F,, see equation (18 ) ,  using suitable identities. 

For illustration, the conjugate angle to P2 of the set (Q, P )  is obtained from 

Q ~ =  ~ Q B ( ~ F , / ~ K : )  = ( ~ / 2 e , )  J (ko,kTL sin qi ) - ’  dkT:. 
k:- 

(A41 

Expressing (k,,,, 4;) in terms of only one ‘old’ momentum ( k , , )  and otherwise 
‘new’ momenta ( K : ,  L,, IT:,,  IT^^) through equations ( 1 5 )  and (17 )  gives 

Qz = ( Q /  e , )  kL dkT:/ R ‘ I2  

where R is a quadratic in the old momentum k iL ,  and the coefficients are functions 
of the new momenta. Finally, casting the arguments of the resulting inverse circular 
functions in terms of the components of the individual particle momenta renders a 
particularly concise form and suggests the definition of the pseudomomentum k, of 
equation ( 2 0 ) .  

The form of the second F4-type generator used in deriving the final canonical set 
(Q‘, P‘) of equations (27 )  is very similar 

The conjugate angle to Pi  is expressible in integral form as 

Q;= - ( e o / 2 ~ )  J T o L  (&k, sin Q;)-’ d.rr,*: 

the analysis proceeding by casting ( k , ,  Q;)  in terms of one ‘old’ momentum ( rOL) and 
otherwise ‘new’ momenta (K: ,  L,, C:, .rrfl), and the resulting angle being treated as 
above. 

Analogously to F4(p’, P ) ,  one can obtain the generator FL(P, P’ )  explicitly: 

FXP, P’)  = (PiOS - P3QJ - [PI - (PS + Pi ) ] (  9, - 0:) (A81 
with the angles taking a complicated form in terms of the momenta (P, P‘) .  
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